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A perturbational A* compact exponential finite difference scheme
with diagenally dominant coefficient matrix and upwind eftect is
developed for the convective diffusion equation. Perturbations of
second order are exerted on the convective coefficients and source term
of an A? exponential finite difference scheme proposed in this paper
based on a transformation to eliminate the upwind effect of the convec-
tive diffusion equation. Four numarical examples including one- to
three-dimensional model equations of fluid flow and a problem of
natural convective heat transfer are given to illustrate the excellent
behavior of the present exponential schemes. Besides, the h* accuracy
of the perturbational scheme is verified using double precision
arithmetic. © 1993 Academic Press, (nc.

1. INTRODUCTION

The convective diffusion equation is of primary impor-
tance in such fields as fluid mechanics and heat transfer. In
customary finite difference treatment of the equation, as
reviewed by Anderson er al [2], the diffusion terms
expressed by second derivatives are approximated by
central difference, and the obstacle to giving a satisfactory
scheme is usually considered to be the presence of the
convective terms involving first derivatives, which result in
the so-called upwind effect. If the first derivatives are
approximated by central difference, the resulting finite
difference equation has an accuracy of second order, but the
associated coefficient matrix may fail to be diagonaily
dominant when the convective coefficients become large,
compared with the grid size. As is well known, diagonal
dominance is usually required for the discrete approxima-
tions pertaining to the convective diffusion equation to
guarantee the maximum principle of the finite difference
scheme: solutions in the field domain are bounded by the
values given on the boundary, when the equation contains
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no source term. In contrast, when the first derivatives are
approximated by upwind difference, the resulting finite dif-
ference equation is first-order accurate, although the corre-
sponding matrix is diagonally dominant unconditionally.
To obtain a scheme satisfactory in both accuracy and
stability, we may resort to finite difference approximations
involving exponential coefficients.

The exponential finite difference scheme of the convective
diffusion equation was first introduced by Allen and
Southwell [1] in approximating vorticity transport equa-
tion for obtaining their numerical solutions for steady
viscous flow past a circular cylinder. According to Allen and
Southwell, steady two-dimensional convective diffusion
equation

a¢ ép % ¢
2 BT T

Ly +S.

(1.1}

{(In numerical treatment, the convective coefficients 4 and B
and source term S may be regarded as known function of x
and y) is separated into two equations

o¢ 2?

2A0£=6—$+R0 (1.2)
8¢ 9

2306—‘;=§+SO—R0, (1.3)

where 4, B, and S in the discrete subdomain illustrated in
Fig. | are replaced by their nodal values 4, By, and Sy; Ry
is constant. Using the solutions of Eq. (1.2) and Eq. (1.3) as
expansions along the x-line 301 and y-line 402, respectively,
we can express R, in terms of nodal values ¢,, ¢,, and ¢,,
orin ¢4, ¢s, and ¢,. Equating the values of R, gives a finite
difference equation on a five-point stencil 01234, which was
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FIG. 1. The nine-point stencil for finjte differences schemes.

subsequently examined by Dennis [5, 6] who revealed the
accuracy of second order and pointed out the important
property of being diagonally dominant of the equation.
Afterwards, Spalding [11] and Roscoe [10] described
some methods which appear to be essentially the same as
that given by Allen and Southwell [117.

The method of Dennis [5] 15 somewhat general. The
convective diffusion equation (1.1} is separated into the two
equations

g 8%
o} _..ﬁ_J
LA ax—axz R (1.4)
o 0%
BYX_—Yi85_R 1.
2 day &y? ’ (1:5)

where A, B, and S remain functions of x and y instead of
being replaced by their nodal values as in the Allen and
Southwell method. Along the x-line, 4(x, y) = A{x, y,) and
R(x, ¥)= R(x, yg), Eq. (1.4) becomes an ordinary differen-
tial equation, of which the solution for ¢ is a function of x
only. By means of a standard technique to eliminate the
term of first derivative in linear ordinary differential
equations of second order, we put

(%, y0) =) )
() =exp| [ atx,yo) x|

(1.6)

(1.7)

to transform Eq. (1.4 into

[Az_dA(x, yo)]e_dzﬁ R(x, yq)

¥(x)

T dx?

dx (1%)

which is a diffusion equation with no convective term.
Approximating the second derivative in Eq. (1.8} by central
difference and combining the resulting discrete equation of
# with transformation (1.6) gives an expression of R(x,, y,)
in terms of nodal values ¢, ¢, and ¢,. Similar treatment of
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Eqg. (1.5) along the p-line 402 gives an expression of
R(xg, yo)in values ¢4, ¢y, and ¢,. Finally, a finite difference
scheme on five-point stencil 01234 is reached by equating
the values of R(x,, y,). The scheme is second-order accurate
and has a matrix of diagonal dominance after improve-
ment [8].

Dennis and Hudson (7] held that the advantage of
Dennis’s method over the Allen and Southwell approxima-
tion lies in the fact that Dennis’s can be improved in
accuracy more conveniently by adding difference correc-
tions in the way of Fox [4]. The modified exponential finite
difference approximations of fourth-order accuracy [7, 8]
with corresponding polynomial counterparts [9] have
compact structure involving only values of ¢ at the nine
points centered on a typical point (xg, yo) of a two-
dimensional square grid and can give very accurate results
on comparatively coarse cell grids for the problems they
chose as examples. Nevertheless, in their opinion [97, what
seems to be a blemish in an otherwise perfect thing is
that the associated matrixes for both the exponential and
polynomial fourth-order accurate schemes may fail to be
diagonalily dominant, even for the one-dimensional case. In
connection with this fact, Dennis and Hudson [9] have
given a basic formula of #* accuracy by using an upwind
approximation to a higher derivative which is always
diagonally dominant and which may be corrected by adding
a deferred correction to make it 4#*. Even so, for the solu-
tions thus obtained, no maximum principle is guaranteed,
and non-physical spurious oscillations may occur.

More importantly, the upwinding property of the finite
difference scheme should be examined. Inherent to convec-
tive diffusion phenomena, we have the following effect, often
referred to as upwinding in the field of computational fluid
mechanics and heat transfer [2]: the convective diffusion
quantity ¢ is more strongly affected by the upwind ¢ than by
the downwind ¢; and for convection-dominated problems
the downwind influence becomes negligible, compared with
the upwind one. Concretely, in the one-dimensional finite
difference scheme,

a;=a; \$i_r1ta P+ S (1.9)
for the convective-diffusion equation
2y _79 (1.10)
ax  ox? '

(where S, stands for a discrete source term), the upwinding
property requires: (i) the downwind coefficient a, (a; ., if
A;>0, or a,_, if A,<0) should be always less than the
upwind coefficient a,, (o, ., 1f 4,>0, or a, ., if A;<0); and
a, will become negligible compared with o, when the flow
field is convection-dominated { 4 becomes very large). In the
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compact A* scheme developed by Dennis and Hudson [9],
corresponding coefficients can be written as

34 W
ox? |,

1
=t +— AH?
ad; C({‘!'lz( ‘.h +

(1.11)

1 %4
=Bt A - N 1.12
vy B,+12(A,h axth) (1.12)
a;=da,_,+da;,4, (1.13)
where
1 184| ,
= —Ah——— 1.1
o, 1+2A,h 68x1h (1.14)
1 104 ,
=] - A h—=— 1.1
fi=1 2A,h 66x',-h (L.15)

and % stands for the cell size. Here we only consider the sim-
plest case of constant A. The coefficient expressions are
thence reduced to

ai71=]+Rcc+%R§c (116)

ai+l=1_Rec+%R§c> (]17)
where R,,= 4;h is the cell Reynolds number, which is
a basic dimensionless criterion in computational fluid
mechanics [27]. It can be easyly appreciated that (1) the
downwind coefficient @, is always less than the upwind one
a,, but unfortunately (i) the difference between a, and a,
becomes less and less as R, increased, and eventually for
great R, value, &, becomes actually identical with a,,. This
contradiction to upwind effect states that the compact #*
scheme by Dennis and Hudson [9] is certainly not
appiicable for convection-dominated problems, which will
be illustrated in detail in the numerical exampie on the fluid
flow model equation.

The object of the present paper is to advance a method of
giving exponential finite difference of second-order accuracy
for the convective diffusion equation based on a general
transformation to eliminate upwind effect and to improve
the second-order accurate scheme with special care for
preserving the upwind effect and the property of being
diagonaily dominant of the associated matrix while
achieving compactness and higher order accuracy. Methods
of this nature have not been considered previously,
Numerical examples including one- to three-dimensional
model equations of fluid flow and a problem of natural
convective heat transfer are given to illustrate the behavior
of the present exponential schemes. Besides, the fourth-
order accuracy of the improved scheme is verified using
double precision arithmetic.
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2. THE UPWIND FUNCTION AND AN #*
ACCURATE EXPONENTIAL SCHEME OF
THE CONVECTIVE DIFFUSION
EQUATION

By putting

¢(x, ¥)=t(x,y) B(x, y),

Eg. (1.1) is transformed into

o 20 Y 29
24 (ax@w&)us(a—ymwa)

a2
—(aﬁ g+2

oy, 0
ox Ox ax?

&%y 320
— —=1+S.
+(ay29+2 +way2>+

6y 00

22
oy Oy (22)

If

¥

A"buéx’ B!ﬁ—%

=3 (2.3)

Eq. (2.2} becomes a diffusion equation,

e2) (=50

%0 806 S

_gv ot s 4
Tty (24)

In Eq. (2.4), the convective coefficients 4, B are equally
located, where involving convective coefficients is merely a
diffusion source without preferred orientation; consequently
there is no upwind effect retained. Hence the upwind effect
is completely embodied by the function defined by Eq. (2.3);
we call ¢ the upwind function of the convective diffusion
equatien (1.1) accordingly. From the standpoint of pure
analysis,  does not exist unconditionally. Yet fortunately,
in finite difference treatment, i is required only in special
subdomains such as the x-line 301 and p-line 402 as
shown in Fig. 1. Under such circumstances, we have
unconditionally expressed as

¥ =exp [[ (A dx-i—de)]. (2.5}
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Approximating the diffusion equation (2.4) by standard
three-point central differencing gives

1
h_f(ei_F]J 28 +6‘711)

1
+h_§ ('9:'.”1

- Az_ i+ 1,7 r--l.j)
(G

B... B . S. .
Bz_ i j+1 r‘}—l) o i
+( " 2h2 01!1 wi.j,

where k|, 4, are grid sizes in the x, y direction, respectively.
In the subdomain concerned, the upwind function may be
simply taken as

28 +9 1—1)

(2.6}

W =exp(d, ;x+ 8B, ;y) (2.7)
Substituting ¢, /4, ; for 6, in Eq.(2.6), we obtain the
following finite d]ﬂ"erencc equation for ¢:

1

A Lk
P(e A”kl¢1+1,j‘2¢s.j+5’A" i 1)
1

1 y ,
* h_§ (e 57, 01— 20, ;+ %, \)

' A=A
_ A2 _ i+ 1, F 141,})
l:( " 2k,

A -
+(B,-2‘J——B£2hz—”—l):| ¢i.j’S-lf' (2.8)

Owing to the fact that the convective diffusion equation has
a special solution ¢ = const, the coeflicient of the central
point 0 of an accurate finite difference equation of the con-
vective diffusion equation should be equal to the summation
of the coefficients of the neighbouring points 1, 2, 3, and 4.
In order to rectify the deviation caused by discretization, we
modified Eq. (2.8) into the following form:

2 [L cosh(A; .h )+

h% Ly hZCOSh(B h ):|¢

1 ) -
= W2 (9~A:'}hl¢5f+ W etiilg, L)
1

1 , -
+ P ("B, +etihg, )
2

+35, ;.

Employing expansion technigues in which the exponen-
tials are expressed in powers of their arguments, the
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modified differential equation, which is equivalent to the
corresponding finite difference equation (see Anderson et al.
[27]), of the above scheme is found as

o dp 0¢ d' I
24 3x +236y 7 2-+-a 5+ 8+ 2E B
+ 2Eyh§ + O(ht, k), (2.10)
where
__L ¢ L L %
Ec= A 2'21A ax?
634;6 1 6“(15
3'A ax? 4' ax? (2.11)
1 ¢ 1 3%
E=—Bty+—p—~L
Y 3T gy 227 &7
g 1 %
5?4-55)7 (2.12)

which states that the accuracy of the scheme is of second
order.

The property of being diagonally dominant of the scheme
is obvious. Excellent resolution ability to abrupt change in
function value s illustrated in the numerical solution of the
Burgers equation in Section 6 of this paper. The present 4’
accurate scheme is the simplest in representative form in the
category of exponential scheme initiated by Allen and
Southwell [1].

3. THE BASIC PERTURBATIONAL #°
ACCURATE EXPONENTIAL SCHEME

In line with the previous section, for one dimensional
convective diffusion equation

(3.1)
we have exponential 4% accurate scheme,

%cosh(A h) @,

1
=P(€'-A'h¢i+1+€AE"¢'5—1)+S:': (3.2}

with modified differential equation

a 2
2A—qé—a——+S+2E h+ 0",

3
6x  Ox? (3.3)
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where # stands for the grid size; E. is expressed by
Eq. (2.11}.

As this scheme possesses excellent properties, it would be
best to preserve its basic structure while improving its
accuracy. Supposing there are perturbations of second
order exerted on the convective coefficient and source term,
the scheme becomes

+1 +eAmh¢f71)+Spr's (34)

where
A,=A+d4,-h* (3.5)
S,=584-248, -h?, (3.6)
which is equivalent to differential equation
dg 0°
24 ;5 536—2+S,,+2Exh2+0(h“). (3.7)

[t can be seen that an #* accuracy is achieved if only

AA2@=ASQ+EX+ Oh?). (3.8)
dx
From Eq. {3.7), we have
2
2 i’— 24 6¢»_ S+ 0(h%) (3.9)
dx ox
R Y| og A
bx—j_l(a +24 )ax—ZAS—a—+O(h } {3.10)
64915 04 324N B¢
T (SA +]2A5—+2@ )ax
0A as s .
—4(5; )S 2145;_5‘_2"’0(” Yy (34D

which substituted into Eq. (3.8) give expressions for the
perturbational values

04 62A
44, = A— .
2 (2 ax ) O(h*) (3.12)
1 94 35' RN
ASz—ﬁl}( +26_>S 2Aa 6x1:|
+O(h?). (3.13)
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Discrete expressions for the perturbational values may be
found by approximating the derivatives in Eqgs. (3.12) and
(3.13), using central differences of second-order accuracy,

(4dz) =33 [(1 = Ak A, =24,
F(1+4,h) A4, ] (3.14)
1

(48,); =55 {(L+ Aih) S+ 20~ 1+ 42K
F(A i~ A G1S A+ (1 —Ah) Sy} (3.15)

Excellent stability of the original 4* accurate exponential
scheme is preserved in the perturbational A* accurate
exponential scheme.

4. PERTURBATIONAL 4* ACCURATE
EXPONENTIAL SCHEME IN
TWO-DIMENSIONAL SPACE

Similar to the one-dimensional case, if perturbations of
second order are exerted on the convective coefficients and
source term, the two-dimensional A? accurate expanential
scheme (2.9) becomes

1 1
Z[hchSh(A,,,, A+ % — cosh(B,;:h )}:ﬁij

=12 [exp(A;.’ujh )¢.ﬂ 1.7
+exp(—Apsjh1)¢i+l,j]
1
+h_§ Lexp(B,;h:) ¢, ;1
+exp(—Boyfa) @i 11+ Spy (4.1}
where

AI,=A+AA2-hf 4.2)
BP=B+ABZ-h§ (4.3)
SP=S+2(AS2,-hf+AS2y-h%). (4.4)

The modified differential equation corresponding to scheme
(4.1}is

¢ a¢

24, 2B —

P ax ax " ay

2 az
5% 2+S +2E,-h;

+2E,-h2+ O(h*), (4.5)
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where E_and E, are expressed by Eqs. (2.11) and (2.12). If
only

o9

AA, hzﬁlﬁt#AB2 hza

dx

=4S, +E i+ (45, +E) 2+ O(RY), (4.6)
the perturbational scheme is 4 accurate.
From Eq. (4.5), we have
a’¢ d¢
T5=247-S, (4.7
% _2pY 4.8)
oyt ey TV @
where
é¢ 8?
Sx=S+( 2B—¢+—¢) (49)
ay  &?
dg a*
S}.=S+( 24 5‘3+-a—f) (4.10)

.Differentiating Egs. (4.7} and (4.8) with respect to x and y,
respectively, gives proper expressions of the derivatives
33¢idx3, 3*gfox?, 3¢/dy’, and 8%¢/3y°. Substituting those
expressions into Eq. {4.6) yields the perturbational values

1 /. 84 %A ,
AA, = 12( ot A >+0(h) (4.11)
c?B J’B
AB, =
, 12(236 5 )+O(h ) (4.12)
48, =~ 2 A2+2A€£)S _24P +Q]
2,r'24 ax x X X
+O(k?) (4.13)
1 , .. 0B
ASZV—24I:2(B +ZBEJ-;)S 2BP,+Q :[
+ O(h?), (4.14)
where
as % oBad¢ 3¢
B bl 4.15
Pe= ax Taxay “ox 5y+8x8y2 (4.13)
as % A dd ¢
p=22 9420 L0 4.16
oy oxdy Oy dx  dyox? (4.16)
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aZS 3¢
Q=g 525"

_, 9B 0*B 5¢ &'
ax” ay ax? dy?
a° S 3¢
Ea oy ax
_,04 2A a¢ 4¢
éy? o 6vc ay?

In Eqgs. (4.11) to {4.14), the mixed derivatives can be
approximated by following difference formulae

8 0
dx dx dy

(4.17)

o4 0%
dy 0x dy

0.=

(4.18)

(&'gféx? 8y)o
=44, —2(d, + 92+ b3+ ¢a)
+(¢s+ds+d;+ ) 1hTR+ O(R)  (4.19)
(B°/ox? By)g
=1 =206 — ds} + s+ ¢s— P71 — b5 1/2hTh,
+O(hY) (4.20)
(8°p/6x 8y*)o
=[—2$) — @)+ 5 — b — 1+ B 3/20, 13
+0(h?) (4.21)
(3*¢f0x dy)o
= (s — g + B — b5 }/dh 1, + O(h?) (4.22)

and other derivatives by three-point central difference.

It is obvious that only nine points centered on a typical
point (ih,, jh,) are involved in the perturbational value of
the source term, which makes the overall scheme highly
compact. As the perturbational value of the source term is
of higher order, it is convenient to treat it as an element of
the source term in iterative process. In Fig. 1, the points
5678 having to do with the perturbation of the source term
are linked with dashed lines, so as to tell which are from the
basic points 01234 of the perturbational 4% accurate scheme.

5. PERTURBATIONAL k* ACCURATE
EXPONENTIAL SCHEME IN
THREE-DIMENSIONAL SPACE

Similar to the two-dimensional case, three-dimensional
convective diffusion equation

o9 o¢ o

247+ 2B 5420
_o ¢ 3¢
=mtaitaatS (5.1)
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has a perturbational #* accurate exponential scheme,

1 1
2 [}1—2 cosh(A,;, )+ h_i cosh(B,,. i)

1

1
+E cosh(CP,jkhg)} P

1
=F [exp(Apajkhl) ?; . L&
3
+eXp{— Al ) @0 k]

1
+F [exp(Bpr‘jkh2) ¢'i,j7 1Lk
2

+ eXP( - Bp:jkhZ) ¢1’,_j+ k]

[exp(— Cpfjkhj) ¢f,j,k—1

hZ

+exp(_cpzjkh3] @k 1+ Spis (32)

where 21, h,, and k, denote grid sizes in the x, y, and z direc-
tion, and it 1s assumed that #,, h,, and h; are of the same
order of magnitude, O(h). In Eq. (5.2)

A,=A+44;-h, (5.3)
B,=B+48, b} (5.4)
C,=C+AC,-h? (5.5)
S,=8+248, hi+ 48, -3+ 45,.-h3)  (56)
and
1 64 &4
Ay=— —t— 2 .
44, 12(2,4 = axz)ﬁLO(h) (5.7)
1 dB B
B,=— — ?
AB, 12(235 +6y2)+0(h) {(5.8)
1 éc
ACZ:E(ZC_’— 522)+0(h2) (5.9)
1 s A
ASH:‘QE 21 A4 +2A—a— St 2AP\,+QI
+ O(h?) (5.10)
1 6B
ASZ},=ﬁ 2(B’+2Ba S,—2BP, +Q]
+ O(h?) (5.11)
AS:,:=%[2(C2+2C—)S ychz+Q]
+ O(h?) (5.12)

Q.=

—24

2
46C ¢

a°s

ay* B

—24

hEAY
gz

—24
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dg 0% a¢ &4
286_y+?3?)+< W+ ) (5.13)

:
.

o 0% op  8?
A " AR
-2 o -i-a )+( 2Bay+ay)
3

083y 08
dxdy oxdy oxoy
% 0Cop 3¢
8xdz  Ox gz ox 8z
o _,ices, o
dy az dy 8z  dy dz?
&' oA 6¢5+ )
dy Ox 6y dx  dy dx?
2475 aA o 3¢
dzéx 67 8x 0z dx°
8% aB o4 N ¢
dzdy "oz dy  0z0p°
3¢5 B 2%
ax? dy dy

ox ox dy
623 a o, ¢ %
ax dy  dx?ay? ax? 6z
&*C ¢ o, ‘¢
ox? 9z | ox? gz’
3424
dy dx dy

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

-2C

dx dx dz (3.19)

%
éy® dx
°4 @¢ %, Fial’)

32 0x " axtoy?

&g 04 0%
oy*ox Oy dyox
a*C 5¢5 %, 09 o'
8y 0x | ay? ax?

¢
o> ox
84 34) 54¢
a2 Ebc 822 ox?
F¢ B 0%
0z dy 9z 9z dy
’B (‘fqﬁ a4, 9 ol
a2 dy  0z25y*

(5.20)

oA ¢
0z 0z dx

(5.21)
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Approximations of the derivatives in above equations are
similar to those for the two-dimensional case.

6. NUMERICAL EXAMPLES

One- to three-dimensional model equations of fluid flow
and a problem of natural convective heat transfer are solved
with the present exponential schemes. The model equations
are also solved with the compact 4* scheme given by Dennis
and Hudson [9] or the custamary #* central difference
scheme, for comparison purposes. Results are compared
with corresponding exact solutions or previous benchmark
solutions. Simple line iterative successive over-relaxation
procedures with suitable choice of relaxation parameter are
used to solve the difference equations. The iterative process
is repeated until

o+ — i <e

for all grid points, where & is the iterative count, ¢ is deter-
mined as 10~ '° for double precision arithmetic empioyed in
solving two-dimensional model equation, or 10~ for single
precision arithmetic in other examples.

ExaMpPLE 1. As a simple example of convective diffusion
equation with solution involving abrupt change in function
value, we consider the one-dimensional model equation of
fluid flow, namely the well-known Burgers equation

du 1 u
—=— 6.1
“Bx " Redx’ (61)
with boundary conditions to give its solution as
u=tanh[Re(l —2x)/4]. (6.2)

In cases with large Reynolds number Re, this solution
contains an abrupt change centred at the point x = 0.5, thus
to model the nonlinear effects, such as the viscous boundary
layer and the shock wave, of fluid flows.

The computational region (0<x-< 1) is distributed
uniformly with 20 grid points. Some typical numerical
results are given in Fig. 2 and Table I, where U, is the exact
solution given by Egq.(6.2); U, is the finite difference
approximation given by the present 4” accurate exponential
scheme, U, is the approximation by the present A#* accurate
exponential scheme, U, is by Dennis and Hudson’s #*
scheme. It is shown that (i) for small Re (corresponding to
small cell Reynolds-number Re.) the numerical accuracy
achieved by the present £ scheme is similar or identical with
that by thé Dennis and Hudson #* scheme, and the present
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TABLE 1

Solutions of the Burgers Equation (6.1}

(x+h)h U, U, U, U,
Re=10
7 0.7264 0.7289 0.7264 0.7264
8 0.5770 0.5798 0.5769 0.5769
9 0.3754 0.3779 0.3754 0.3754
10 0.1308 01318 0.1308 0.1308
11 —0.1308 —0.1318 —0.1308 —0.1318
12 —0.3754 —0.3779 —0.3754 —0.3754
13 --0.5770 —0.5798 —0.5769 —{0.5769
14 —0.7264 —0.7289 —0.7264 —0.7264
Re =500
7 1.0000 1.0000 1.0000 0.8128
8 1.0000 1.0000 1.0000 0.6972
9 1.0000 1.0000 1.0000 0.5148
10 1.0000 1.000¢ 1.0000 0.2270
11 — 1.0000 — 1.0000 —1.0000 —0.2270
12 — 1.0000 —1.0000 —1.0000 —0.5148
13 — 1.0000 —1.0000 —1.0000 —0.6972
14 —1.0000 —1.0000 — 1.0000 —(.8128
Re = 100,000
7 1.0000 1.0000 LO0OO 03710
8 1.0000 1.0000 1.0000 0.2653
9 1.0000 1.0000 1.0000 0.1594
10 1.0000 1.0000 1.0000 0.0532
11 —1.0000 — 10000 — 1.0000 —0.0532
12 — 1.0000 —1.0000 —1.0000 —0.1594
13 —1.0000 — 1.00600 —1.0000 —0.2653
14 —1.0000 — L0000 — L0000 —0.3710

h* scheme can give much more accurate results than the
present 4* scheme; (ii)} for convection-dominated cases with
large Re, both the present A% and A* schemes can resolve
accurately the “viscous boundary layer”- or “shock wave”-
like steep changes, while the Dennis and Hudson A% scheme
gives only very poor or intolerable results, as is predicted in
the introduction of this paper.

ExampLE 2. The two-dimensional model equation for
fluid flow, which is considered by Roscee [10] and Dennis
and Hudson [7-9], can be modified as

Jdu u_ O o
ax Cay axt oy
— (2 sin y +sin x) cos x, (6.3)
where
= §in X cOs ). (6.4)
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FEG. 2. Comparison of solutions of the Burgers equation (6.1). The
real line siands for the exact solution, dashed line for the solution given by
the compact k* scheme of Dennis and Hudson, dotted real line for the
present exponential schemes: (a) Re = 10; (b} Re = 500; (¢} = 100,000.

Exact solution of this equation is

= —Cos X sin y. {6.5)
The term on the right-hand side of Eq. (6.3} does not
constitute all the possible pressure gradients for Eq. (6.3) to
be truly representative of the momentum equation, but
Eqgs. (6.4) and (6.5) satisfy the equation of continuity. The
solution 18 sought within the square region 0<x<m,
0 < y<m, subject to boundary conditions for u and v
caiculated from Egs. (6.5) and (6.4), respectively, on the
square boundaries. To demonstrate numerically that our
finite difference method of perturbation is #* accurate, two
different square grid sizes (1) h=n/10 and (i) 2 = n/20 are
used in the calculation. In Table IT we give details of the
computed results for 4(0.7, y) for values of y/z from 0 to 0.5,
where I/, is the exact solution given by Eq. (6.5), U, is by
the i* scheme with % = 7/20; U, is by the h* scheme, U, is by
the 4% exponentiai scheme, U, is by the 4 central difference
scheme, all with #=n/10; and E, is the ratio of the error in
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TABLEII
Solutions of the Two-Dimensional Model Equation (6.3}
xin yin U, U, U, v, U, E,
07 01 0.1816356 0.1816368 (.1816541 (.1827 0.1830 154
0.7 02 03454915 03454934 03455220 03473 0.3478 16.¢
0.7 0.3 04755283 04755308 04755699 04778 04786 16.6
0.7 04 05590170 0.5590201 05590679 0.5616 0.5625 164
0.7 05 05877852 (.5877886  (.5878399 (.5905 0.5914 16.1

the coarse mesh solution at a given point to the corre-
sponding error in the fine mesh solution, which is
approximately 16, as one would expect from an /* accurate
scheme when the steplength is halved. A solution correct
to four decimal accuracy is obtained using a grid size of
h=r/10 by the h&* accurate scheme.

ExaMPLE 3. Similar to two-dimensional case, we design
a three-dimensional model equation of fluid flow

du  du o Ou N 0%u N 8%u
ox2  @y? 922
—cos x[2sin y+2sin z

+ sin x(sin y + sin z)*

+ cos? y(sin y + sin z)
—cos’ z(sin y —sin x)], (6.6)
where
v =cos p{sin x + sin z) 6.7)
w = —0s z{sin y —sin x). (6.8)
Exact solution of Eq. (6.6) is
1= —cos x(sin y + sin z). (6.9)

The numerical solution is sought within the square region
O<x<n 0<y<n, 0<z<nwith grid sizes hy =h, =h; =
/10, Typical results are given in Table II1, where U, is the
exact solution, U, is the numerical solution by the present
h* accurate scheme, U, is by the #* exponential scheme,
U, is by the A? reference scheme. Advantage of the present
h* scheme over the present 4° scheme and that of the
present A> scheme over the A reference scheme (the central
difference scheme) can be appreciated.

ExampPLE 4. Asa final example we consider the prablem
of two-dimensional natural convective heat transfer in a
square cavity defined by O0<x<1, 0< y<1, of which
benchmark solutions have been given by de Vahl Davis [3]
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TABLE Ik

Solutions of the Three-Dimensional Model Equation (6.6)

x/n y/n z/r u, U, U, U,

0.7 0.7 0.1 0.657163 0.657174  0.658629  0.660356
0.7 0.7 0.2 0821018  0.821042  0.823179  0.826458
0.7 0.7 0.3 0951055 0951090 0.953437  0.958047
0.7 0.7 0.4 1.034543 1034587  1.036927  1.042472
0.7 0.7 0.5 1.063312  1.063358 1065671 1.071554

and a comparison solution has also been obtained by
Dennis and Hudson [9], using their 4% accurate
approximations. In terms of dimensionless variables the
governing equations can be written as

Vi = —{ (6.10a)
éd 0
V¥{=pPr-! ( % —+v 6C) Ra or {6.10b)
dy dx
ar aT
V3 —
T=u 6x+v 3’ (6.10c)

where u=0y/dy, v=-3y/0x are the two-dimensional
velocity components in the x and y directions, Ra is the
Rayleigh number, Pr is the Prandtl number, and operator
V?=8%8x* + 8*/dy% If C denotes the unit square and # is
the outward normal to it at any point, Egs. (6.10) are to be
solved within C, subject to the conditions

Yy=0yjon=0 on C; (6.11a)
T=1 when x=0,
(6.11b)
T=0 when x=1; .
8T/dy=0 when y=0,1 (6.11c)

The three equations (6.10) are each of the convective
diffusion type and can thus be approximated by the
perturbational #* accurate scheme discussed in Section 4.
The term involving 87/8x in Eq. (6.10b) is a forcing term
coming from the solution of Eq. (6.10c) and must be approxi-
mated in Eq. (6.10b) correct to A* accuracy. According to
Eqgs. (4.13) and (4.14), the perturbational vaiue of the
source term has to do with aT/éx, 3°T/ox? &°T/ox’,
8*T/dx dy, and 8*T/dx 6y*, where §T/éx and 82T/é8x> can be
approximated by normal three-point central difference,
8°T/ox 8y and 3>T/5x 8y by the difference formulae (4.22)
and (4.21), leaving 8*T/dx* approximated by

(2°T/ox*), 2T

1,5

T;_2;)/2h° + O(h?)

(T¢+2}

+27 (6.12)
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TABLE 1V
Properties of Natural Convection in a Square Cavity (Pr=0.71,
Ra=10%)
Umax Vmax Nu max Numin
k el »(x=05) x(p=05} Nuy yx=0) p(x=0)
/10 1.1781 36695 3.7181 11168  1.4995 0.6930
08125 0.1805 0.0693 1
120 1.1750 3.6510 3.6999 L1170 13069  0.6919
0.8135 0.1785 00825 1
1/30 1.1746 36301 3.6980 10172 1.5055 0.6915
0.8131 0.1784 0.0860 1
BMS 1.174 3.649 3697 1.117 1,505 0.692
0.813 0.178 0.092 1
Note. BMS stands for the benchmark solution.

with respect to square grids. Formula (6.12} involves nodal
values of five points along the x-line, in this way the nodal
value of the first external point on the normal through the
vertical boundaries x =0 and x =1 is required, which may
be obtained using an 4° accurate extrapolating formula. The
boundary vorticity can be expressed by an A* accurate
formula

CB [tbh u’jlz

23h2

5 (60, 11, 420,) 4 00Y) (613)

given by Dennis and Hudson [9], where I, [,. and 1,
denote the first three neighbouring internal points on the
normal through the boundary B.

Solutions for Pr=0.71, Ra=10°, 10*, 10° with #=1/10,

1/20, 1/30, using the perturbational £* accurate scheme are

obtained. In each case the program performed one iteration
of the vorticity field followed by # iterations of the stream-

TABLE Y
Properties of Natural Convection in a Square Cavity (Pr=0.71,
Ra =10%)
Umax Vmax Numax Nurnin
h Wmial  px=05) x(p=035) Ny px=0) yx=0)
1/10 50705 16.2835 19.3567 23333 36927 0.5915
0.8215 0.1280 0.1697 1
/20 5.0733 16,1850 19.6555 22337  3.5075 0.5897
0.8233 0.1195 0.1401 1
1730 5.0735 16.1809 19.6297 22361  3.5180 0.5855
0.8233 0.1151 0.1435 1
BMS 5071 16.178 19.617 2.238 3.528 0.586
0.823 0.119 0.143 1
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TABLE V1
Properties of Natural Convection in a Square Cavity {Pr=0.71,
Ra=10%)
Umax Vmax Numsx Numin
h Wrmel  yx=03) x(y=05) Ny plx=0) px=0)
1/t 94156 352363 502577 48730 BTS502 0 07409
0.8360 0.0763 0.2005 1
1/20  9.2056 349781 69.0465  4.7053 83506  0.7289
0.8530 0.0672 01023 1
1/30  9.1105 34.6977 687055 45220 78126 (.7278
0.8550 0.0669 0.0801 1
BMS 4.111 34.730 68.590 4,509 7717 0.729
0.855 0.066 0.081 1

function and temperature fields. In general we set n=1;
however, for the cases with Ra =10 we increased » to
around 15 and introduced a relaxation factor of 0.45 to
ensure convergence of the iterative procedure. Typical
results are listed in Table IV-VI along with the benchmark
solution given by de Vahl Davis [3] for comparison pur-
poses, where we give (i) the magnitude of the streamfunc-
tion at the mid-point of the cavity; (ii) the maximum value
of u on the vertical mid-plane, together with its location;
(iii) the maximum value of v on the horizontal mid-plane,
together with its location; (iv) the average Nusselt number
Nug, on the vertical boundary at x=0; (v) the maximum

TABLE VII

Percentage Differences between Various Properties of the
Benchmark Seolutions and Those of the Present Perturbational
Fourth Accurate Solutions

Ra h | d’ mid | Umﬂx Vmax NHO
10° 1/10 0.35 0.56 0.57 0.02
1/20 0.09 0.05 0.08 0.00
1/30 0.05 0.03 0.03 0.02
104 t/10 0.01 0.65 0.33 4.26
120 0.05 0.04 0.20 0.19
1/30 0.05 0.02 0.06 0.08
107 1/10 0.34 1.46 26.73 8.07
1/20 1.04 an 0-66 435
1/30 L.01 0.10 0.17 0.29
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and minimum values of the local Nusselt number on x =0,
together with their locations. The maximum values (and
their locations) referred to above are evaluated with an #*
accurate interpolating polynomial. The local Nusselt num-
bers on the boundary at x =0 are estimated by a numerical
differentiation formuia of fourth order. The benchmark
solution of de Vahl Davis { 3] were obtained by using mesh
refinement and extrapolation in conjunction with a second-
order method and are claimed to be very accurate.

To obtain a clearer assessment of our O{k*) results we
give, in Table VII, the percentage differences between
various properties of our solutions and those of the
benchmark solutions. De Vah!l Davis [3] has estimated
that the percentage errors of his benchmark solution for
Ra =103 10% and 10° are no more than 0.1, 0.2, and 0.3,
respectively, From Table VII we see that our results based
on k=35 are well within these tolerances for all Rayleigh
numbers considered. It is relevant to note that the
extrapolated bench-mark solutions were based on two
O(h?) solutions obtained with (i) h =45, 7; when Ra = 10",
10* and (il) A= %, & when Ra=10° Thus the perturba-
tional A% accurate scheme gives results of comparable
accuracy on a single comparatively coarse mesh.
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